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MECHANISM OF SPACE CHARGE GENERATION IN SHOCK 

COMPRESSION OF IONIC CRYSTALS 

V. K. Sirotkin and V. V. Surkov UDC 534.222.2 

During shock loading of solids (dielectrics, semiconductors, metals) electromagnetic 
phenomena such as electromagnetic radiation and emission, development of a current between 
the plates of a shortcircuited capacitor upon their compression, etc. occur [1-3]. In a 
phenomenological description of such processes the shock front is considered as a discon- 
tinuity on which polarization, dielectric permittivity, and conductivity of the material are 
given, and the mechanism of charge liberation in the shock front is not concretized [i]o 
The present study will employ a different approach, based on study of the kinetics of 
point defects and dislocations in a shock front and will calculate the dependence of the 
change in potential (or polarization) over front width on the amplitude of shock compression, 
explaining a number of experimentally observed dependences. The materials which have been 
most studied at present are ionic crystals having an NaCl-type structure, in which the charge 
carriers are positive ion vacancies under normal circumstances. Electrification of crystals 
upon quasistatic loading (the Stepanov effect) is related to displacement of charged dis- 
locations. In shock compression experiments the velocity and charge of the dislocations 
have different values, so that the role of dislocations in charge formation within the 
shock front is not known [i]. Attempts at explaining the effect in terms of diffusion of 
Na + vacancies through the shock front do not produce quantitative agreement with experiment 
[i]. The present study will examine both diffusion and over-barrier mechanisms of point 
defect and dislocation displacement with consideration of their multiplication in the shock 
front. 

In the shock front multiplication of Frenkel defects occurs (~i017 cm -3 per percent 
plastic deformation), so that interstitial ions also take on an important role. Lattice 
compression in the shock front leads to distortion of the equilibrium atomic configuration 
in the vicinity of a defect, as a result of which the latter may be displaced. Given a 
thermofluctuation mechanism, the probability that a detect of the k-th type will move 
from one equilibrium position to another is given by the expression 
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~ :  v04 exp ( - -  u ~ / k r ) ,  ( l )  

where  v~ i s  t h e  t r a n s i t i o n  f r e q u e n c y ;  t h e  i n d i c e s  + and - d e n o t e  d i s p l a c e m e n t  a l o n g  and 

o p p o s i t e  t h e  d i r e c t i o n  o f  wave p r o p a g a t i o n  [ 4 ] ;  T i s  t h e  a b s o l u t e  t e m p e r a t u r e ;  v0k = 

I012-i0z4 see-l; ~ is the activation energy characterizing the corresponding potential 

barrier, dependent on the coordinates x, t of the given defect. If a point defect is 
captured by a moving dislocation, its velocity will be equalto the velocity of the dis- 
location Cd, and the transition frequency v = cd/a. In this case charge transport in the 
shock front is accomplished by dislocations, and the sign of the dislocation charge is 
determined by the difference in binding energies of defects of various types to disloca- 
tions [5]. Initially we will consider charge transport by point defects. We denote the 
quantity of particles per unit volume in the sections (x - a/2) and (x + a/2) (where a 
is the lattice constant) by n I and n2. Then the particle flux density through the section 
x has the form ]4= (v~qn41--~4~) a. Expanding this expression in the parameter a and 

considering the transport of defects together with matter under the action of the electric 
field, we obtain 

+ + + + 

Here v is the mass velocity of matter in the shock front; qk is the charge of a given type 
of particle; ~=a2~n4(v~ + v~)/~kT is the ionic conductivity; v~ are functions solely of 

temperature and stress, affecting the height of the potential barrier, in as much as the 
dependence on E, the external electric field intensity and the field created by the charged 
defects is considered in Eq. (2) in the linear approximation by the last term. 

We write the continuity equation and Maxwell's equation as 

0,,4 oi4 . i dv] 
O"T + ~'x = :k - -  p~4mn4nm, 14 = M4 ~ , 

O~E ~ qk (n4 -- n4o), 
4 

(3) 

where fk is a function of the source of defects formed in the shock wave; M k is the multi- 
plication coefficient; the coefficient d~/dt is proportional to the probability of recombi- 
nation of vacancies and interstitial ions, with it following from the law of charge conser- 
vation that M k = M m and Bkm = Bmk; e is the dielectric permittivity; nk0 is the initial 
defect density. The coefficient ~km is proportional to the particle scattering section 
%4a = and the particle velocity %9a, i.e., Vkm ~ va 3. Evaluations for a = 3"10 -I~ m and 
n = 10 Is cm -3 indicate that the recombination term is small in comparison to the first term 
in Eq. (3) at frequencies up to i0 I~ sec -I, so it will not be considered further. THe 
ratio of the last term of Eq. (2) to the first terms %qEl/kT where I is the characteristic 
scale of the shock front. At a field intensity of E % 10 8 V/m (the dielectric breakdown 
intensity) this ratio is %0.4, i.e., the last term can also be neglected. 

W~th these assumptions the particle behavior is determined by independent equations. 
Substituting Eq. (2) in Eq. (3), for the particle density we obtain a Fokker-Planck type 
equation with source (subscript k is omitted) 

an a a i r + +  a - - ~ . ( ~  + v - ) n  = M  ~ .  
0~+ + a  v + - - v  - 70x  

Under t h e  a c t i o n  o f  t h e  e x t e r n a l  s t r e s s e s  t h e  d i r e c t i o n s  a l o n g  and o p p o s i t e  t h e x  a x i s  
become n o n e q u i v a l e n t .  Th i s  c a u s e s  v + and v-  c a l c u l a t e d  a t  t h e  same p o i n t  t o  d i f f e r .  
However a n a l y s i s  shows t h a t  c o n s i d e r a t i o n  o f  t h i s  e f f e c t  does  n o t  q u a l i t a t i v e l y  change  t h e  
r e s u l t .  T h e r e f o r e  f o r  t h e  f u t u r e  we w i l l  assume t h a t  v+(x )  = v - ( x )  = v ( x ) .  The te~m in  
b r a c k e t s  i s  c a u s e d  by m o t i o n  o f  d e f e c t s  i n  t h e  shock  wave f o r c e  f i e l d .  At v = c o n s t  we 
o b t a i n  a d i f f u s i o n  e q u a t i o n  f rom Eq. ( 4 ) .  I f  in  t h e  f i r s t  a p p r o x i m a t i o n  in  a we c o n s i d e r  
the difference between v + and v-  in the form v-  -- v + ~ aav/Ox, then the general character 
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of the solutions presented below does not change, the basic expressions coinciding to the 
accuracy of a numerical factor. 

In the case of charge transport by dislocations n represents the n(~nber of dislocations 
per unit area. Correspondingly, Eq. (2) gives the dislocation flux per unit length. The 
charge of the dislocations is independent of the load applied [5], while the rate at which 
they multiply is proportional to d$/dt, just as for point defects. In the final outcome, 
we again arrive at Eq. (4) with different parameters: ~ = cd/a, M = M d % i0 ~s m -= [6] is 
the dislocation multiplication coefficient [6]. 

We will analyze a steady-state shock front in which all parameters depend on a single 
parameter ~ = (x - Dt)X, where D = const is the shock wave velocity. Transforming the 
variables, we integrate Eq. (4) over $. Neglecting v in the final expression in comparison 
to D, we have 

h - - m  = adgm/d~, m = n/no, 9 = ~ /v  1, ( 5 )  

= a2~J(DE), h = t + M?($)/no. 

Here the condition p = m = I as ~ + + ~ is used, and it is also considered that all deriva- 
tives vanish at infinity. 

Integration of Eq. (5) gives 

I ~ d~" .4~=' ra (~) = ~ h (~ ' )  e x p  9 (~,,)j _ = .  
(6) 

For weak shock waves it is more convenient to use the asymptotic expansion of the solution 
in the small parameter e. For example, at 91 = l0 s sec-!, a = 3"10 -I~ m, D = 2.5 km/sec, 
X = 10 -4 m we find that ~ = 3.10-19. Equation (5) is a singularly perturbed equation as 
described in [7]. Nevertheless there is no boundary series in the asymptotic expansion of 
its solution, since the zeroth approximation satisfies the initial conditions. Thus~ 
integrating the exact solution of Eq. (6) by parts k times, we write the expressions 

r n = h - - a ~ h + a  2 .~t ~ t h - - . . .  ~ ('l)k:zh~ ~'~d ~ l x h +  , ( - l ) ~ : t ~  f '  

1 t ,  / , d \A+t s =  
- c o  

whence in the first approximation 

m =  h - - a ~ h .  (7)  

In weak shock waves (p << K, where p is the pressure and K is the modulus of volume com- 
pression), when effects of lattice oscillation anharmonics are insignificant, in Eq. (i) 
we can take u = u 0 - ~, where u = p/K. Then, using Eq. (7), we obtain the charge density 
distribution p over the width of the shock front for a thermofluctuation mechanism of point 
defect or dislocation displacement. Neglecting defect multiplication at this stage and 
considering that they are generated in pairs (electrical neutrality condition) we find 

p =  - - - -  qa~n 0 d? qano" 
D ~ k r  V (~') 7~'  E= = ~ [u (~) - -  u (0)1, 

v (7) = a v  o e x p  [ - -  (u o - -  [~7)/(kT)] 

(8) 

(where v(~) is the defect velocity). For dislocations q indicates the linear charge density 
of the dislocation. I~ the case of point defects Eq. (8) must be summed over all types of 
defects. 

For above-barrier displacement of charges in Eq. (7) we take p = const. 
multiplication of defects and dislocations, in place of Eq. (8) we have 

qa%M qa%M d%~ Ex = [~ (~) - -  "~o] Jr E~,;  
~) D~, d~' eeoD 

Considering 

(9) 
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where v 0 = av 0 is the limiting defect velocity (for dislocations v 0 is of the order of the 
transverse wave velocity). The constant E 0 can be determined from Eq. (8) at ~ = 70 = u0/~, 
Y0 being the critical deformation at which the potential barrier vanishes. For dislocations, 
generally speaking, the linear charge density q is different for the dynamic stage, Eq. (8) 
and for the thermofluctuation displacement mechanism, Eq. (9). 

If we approximate the shock front by an expression of the form 7 = (7.../2)(1 - th ~) 
(where Y, is the shock compression amplitude), then it follows from Eqs. (w (9) that 
p % ch-2~. Consequently, the charge is essentially concentrated within the shock front width, 
and its distribution is that of a soliton (asymmetric in the case of Eq. (8)). 

We will evaluate the parameters describing point defects. Since the radius of CI- ions 
is greater than that of Na + ions, we will limit our study to the latter, using the index i 
for interstitial ions and v for Na + vacancies. We will consider an infinite lattice 
containing an isolated interstitial ion. Let the lattice be compressed in the direction 
[I~ 0, 0]. Using the ion interaction energy in the form [8] 

u~i = X exp ( - - r i / b )  -4- q2/r u .  

H e r e  r i j  i s  t h e  d i s t a n c e  b e t w e e n  i - t h  a n d  j - t h  i o n s ;  X a n d  b a r e  e m p i r i c a l  p a r a m e t e r s  ( f o r  
NaCl b = 0.321"10 -l~ m, X = 1.09"103 eV). If we do not consider lattice distortions near the 
defect then for u i we can take the difference between the potential energies of an inter- 
stitial ion positioned at the center of a cell and shifted in the direction of compression 
by half the width of the cell face. For such a displacement the Coulomb potential of the 
interstitial ion does not change, and consideration of repulsion of nearest neighbors (eight 
and four respectively) gives 

ur----- 4%[exp ( - -a /b  ] / - ~  - -  2 e x p ( - -  ]/~..a ~ n u sZ/2b) ], ( 1 0 )  

where s and a are the lattice parameters along and across the compression direction. For a 
lattice with Na + vacancy the potential maximum is reached upon displacement of the nearest 
Na + ion half the distance separating it form the vacancy. With analogous assumptions we 
find 

uv - -  2X [exp( - -  ~ r ~  A- s~/2b) ~- 4 exp ( - -  1 / r ~ / 2 b )  ( l l )  

- - e x p ( - - s / b )  - -  2 exp ( - -  a/b)] -t- V,  

V = ( -  l / + i ?  ~ 
ki,~,k ~fs  2 (i - -  t/2) z -b a 2 [k 2 -~- (1 - -  1/2) 2] 
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TABLE i 

DirecN~ I Md " iO-lS' I MT " tO--24' I E* " m-~l V/m 

.,o, oll l 1,9 I 2,0 i 2,7 

[1,1,1] ] 0,8. l 0,8 [ 1,1 

V ~ + ~ (;~ + k ~) . .  ( 1 1 )  

(the point i = j = k = 0 is excluded from the summation). 

The relationship between volume and pressure in the shock wave is defined by the adia~ 
batic equation of state up to p ~ K [9], whence we obtain the relationship between s and 
for uniaxia! compression 

s = a(TF + i)-l/r~ (12) 

where F is the adiabatic index. Equations (10)-(12) define the functions Uk(7) , while in 
the range aT/b << 1 these relations becomes linear. A corresponding calculation for an 
interstitial Na + ion gives ui0 = 4.5 eV, 8i = ii eV. The value of ui0 is apparently 
elevated, since it exceeds the Frenkel defect formation energy (%3.5 eV). To evaluate u v 
it is simpler to consider uniform compression, so that the lattice sum in Eq. (ii) becomes 
independent of s and can be eliminated, if in the linear expansion we use the experimental 
value Uv0 = 0.86 eV. In this case 8v = -5.7 eV (an experimental value of Sv = -1.5 eV has 
been found [i0]). 

Charge density Eq. (8) proves to be positive for both a vacancy and an interstitial ion. 
This means that the shock front contains an excess quantity of interstitial ions and insuffi- 
cient number of Na + vacancies(V) (Fig. i). The potential barrier for vacancies increases, 
and their role decreases, with increase in pressure. For an interstitial Na + ion the 
threshold value 7o % 0.4. However, consideration of motion of the nearest neighbors of the 
interstitial ion away from each other and anharmonism of lattice oscillations may decrease 

Y0. 

For dislocations the threshold value of u is determined by stresses of the order of 
magnitude of the yield point Y (for NaCI Y ~ 0.05 GPa, i.e., 70 % 2"i0-~), which is signifi- 
cantly less than 70 for an interstitial Na + ion. Therefore in a weak shock wave charge 
transport is apparently caused by defects related to dislocations. 

For comparison with the experiment of [I] involving shock compression of a shortcircuited 
capacitor we will use an expression for the increase in potential in the shock wave which 
follows from Eq. (9). Neglecting Y0, E0($ < 0), we have 

A~ = ~ [[ -- In (2 ch [)], E ,  qavoM?, ( 13 ) 
8% D 

Over the time required for establishment of the electrical signal in the measurement circuit 
% 10 -9 sec a potential difference A# % E,D~ is formed, proportional to the amplitude of the 

current density j, recorded at the output. Equation (13) is supported by the experimentally 
observed linear dependence j,(X,). This effect can be explained by the fact that with in- 
crease in the degree of compression of the material the number of dislocations and point 
defects increases proportionately. 

Figure 2 shows calculated functions for NaCI which are compared to experimental results 
of [i] for various crystallographic axes (a, [i, 0, 0]; b, [i, i, 0]; c~ [i, l, !]). The 
following parameter values were used: q = 1.7"10 -11C/m [5], ~0 = 5"1012 sec-1, D = 3 km/sec, 
E = 6. The data were reconciled by selection of the parameter M. For a dislocation charge 
transport mechanism the multiplication coefficient M d presented in Table 1 is in good agreement 
with the results of [6]. For motion of point defects the coefficient Mp also agrees with 
experimental values of Mp [i0]. Nevertheless, preference must be given to dislocations, for 
which, as has already been indicated above, Y0 is 1-2 orders of magnitude smaller. 
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Considering that the experimental values of M d and Mp are in the ratio Mdqd/e % Mp (where 
s is the elementary charge), it can be proposed that all defects of a given type ~re trans- 
ported by dislocations, which determines the charge of the latter. Measurement of threshold 
j, and 70 values would aid in refinement of the theoretical parameter values. 

The analysis performed above is invalid for pressures close to the value K (y % 0.3-0.4), 
at which a change in electrical signal polarity is observed. This effect may be related to 
the interstitial ion achieving the threshold Y0 value atwhich their displacement velocity 
is comparable to or even higher than the dislocation velocity. The change in the charge 
transport mechanism in the shock front (for u 0 >> kT for point defects) will be quite abrupt. 
We note that electrical breakdown of the crystal cannot be excluded as an explanation for 
such an abrupt change in sign. 

Table i presents maximum E, values for the cusp points of Fig. 2. They are two orders 
of magnitude smaller than the critical field E c % 1.3"I0 s V/m for NaCI. However it should 
be considered that increase in defect concentration in the shock wave and significant lattice 
deformation (Y0 % 0.3) may lead to formation of additional local levels in the forbidden 
zone, i.e., to a reduction in E c. 

Thus, by studying the kinetics of defects and locations in the shock front, a number of 
experimental principles can be explained. The role of multiplication of charged defects and 
dislocations has been clarified, permitting description of the experimentally observed linear 
increase in current density over a certain pressure range as'a function of degree of pressure, 
as well as calculation of the initial voltage step in the measurement circuit. Estimates of 
threshold deformations in NaCI have shown that at 7 ~ 0.4 the charge distributed in the shock 
front is produced by motion of dislocations. With increase in pressure the potential barrier 
for interstitial ions decreases, and at y > 0.4 they also become current carriers. Calcula- % 

tion of electric fields in the shock front shows that at such deformations breakdown pheno- 
mena are possible. On the basis of the expressions obtained for the known shock-wave geo- 
metry it is possible to calculate the dipole moment and radiation of the shock-compressed 
region as a function of pressure amplitude. 
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